The optic nerve head as a biomechanical structure: initial finite element modeling.
نویسندگان
چکیده
PURPOSE To study the relationship between intraocular pressure (IOP) and the IOP-related stress (force/cross-sectional area) it generates within the load-bearing connective tissues of the optic nerve head. METHODS Thirteen digital, three-dimensional geometries were created representing the posterior scleral shell of 13 idealized human eyes. Each three-dimensional geometry was then discretized into a finite element model consisting of 900 constituent finite elements. In five models, the scleral canal was circular (diameters of 0.50, 1.50, 1.75, 2.00, and 2.56 mm), with scleral wall thickness (0.8 mm) and inner radius (12.0 mm) held constant. In three models, the canal was elliptical (vertical-to-horizontal ratios of 2:1 [2.50 x 1.25 mm], 1.5:1 [2.1 x 1.4 mm], and 1.15:1 [1.92 x 1.67 mm]), with the same constant scleral wall thickness and inner radius. In five additional models, scleral canal size was held constant (1.92 x 1.67 mm), and either scleral wall thickness (three models, 0.5, 1.0, and 1.5 mm) or inner radius (two models, 13.0 and 14.0 mm) was varied. In all models, each finite element was assigned a single isotropic material property, either scleral (modulus of elasticity, 5500 kPa) or axonal (modulus of elasticity, 55 kPa). Maximum stresses within specific regions were calculated at an IOP of 15 mm Hg (2000 Pa). RESULTS Larger scleral canal diameter, elongation of the canal, and thinning of the sclera increased IOP-related stress for a given level of IOP. For all models, maximum IOP-related stress ranged from 6 x IOP (posterior sclera) to 122 x IOP (laminar trabeculae). For each model, maximum IOP-related stress was highest within the laminar trabecular region and decreased progressively through the laminar insertion, peripapillary scleral, and posterior scleral regions. Varying the inner radius had little effect on the maximum IOP-related stress within the scleral canal. CONCLUSIONS Initial finite element models show that IOP-related stress within the load-bearing connective tissues of the optic nerve head is substantial even at low levels of IOP. Although the data suggest that scleral canal size and shape and scleral thickness are principal determinants of the magnitude of IOP-related stress within the optic nerve head, models that incorporate physiologic scleral canal and laminar geometries, a more refined finite element model meshwork, and nonisotropic material properties will be required to confirm these results.
منابع مشابه
Reconstruction of human optic nerve heads for finite element modeling.
PURPOSE Glaucoma is a common ocular disease whose pathogenesis is hypothesized to involve biomechanical damage to optic nerve tissues. Here we describe a method for the construction of patient-specific models that can be used to evaluate the biomechanical environment within the optic nerve head. We validate the method using a virtual eye, and demonstrate its use in computing optic nerve head bi...
متن کاملFinite element modeling of optic nerve head biomechanics.
PURPOSE Biomechanical factors have been implicated in the development of glaucomatous optic neuropathy, particularly at the level of the lamina cribrosa. The goal of this study was to characterize the biomechanics of the optic nerve head using computer modeling techniques. METHODS Several models of the optic nerve head tissues (pre- and postlaminar neural tissue, lamina cribrosa, central reti...
متن کاملBiomechanics of the optic nerve head.
Biomechanical factors acting at the level of the lamina cribrosa (LC) are postulated to play a role in retinal ganglion cell dysfunction and loss in glaucoma. In support of this postulate, we now know that a number of cell types (including lamina cribrosa cells) are mechanosensitive. Here we briefly review data indicating cellular stretching, rate of stretching and substrate stiffness may be im...
متن کاملMathematical modeling of the biomechanics of the lamina cribrosa under elevated intraocular pressures.
Comprehensive understanding of the biomechanical performance of the lamina cribrosa (LC) and the optic nerve head is central to understanding the role of elevated intraocular pressures (IOP) in chronic open angle glaucoma. In this paper, six closed-from mathematical models based on different idealizations of the LC are developed and compared. This approach is used to create further understandin...
متن کاملPeripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization.
The posterior sclera likely plays an important role in the development of glaucoma, and accurate characterization of its mechanical properties is needed to understand its impact on the more delicate optic nerve head--the primary site of damage in the disease. The posterior scleral shells from both eyes of one rhesus monkey were individually mounted on a custom-built pressurization apparatus. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 41 10 شماره
صفحات -
تاریخ انتشار 2000